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ABSTRACT:  Software Defined Network (SDN), also known as a Smart Network, as it performs significant role 
in regulating and managing number of heterogeneous networks. Tragically, SDN faces a great deal of 
security issues that may seriously influence the system activities if not appropriately tended to. In the SDN 
network, there is centralization of the controller and hence any DoS attack will cause the entire system to 
collapse. The  DoS attack on centralized model brings about huge challenge of  communication overhead, 
packet delay and loss of genuine packets. Another challenge is there is a lack of research on finding a 
common methodology for intelligently evaluating the security of SDN controllers. Thus, the paper 
contributes by evaluating an intelligent hybrid method for detection and mitigation of DoS attack with 
Entropy, SVM and Reinforcement Learning with Markovian Process model. The paper proposes a profound 
reinforcement learning based system, which can intelligently gain proficiency in learning the optimal 
mitigation policies under various attack scenarios and mitigate the DoS flooding attack in real time. Practical 
experiments are conducted in the Mininet environment, to defend against a wide range of DoS flooding 
attacks such as TCP SYN, UDP, and ICMP flooding and proves that the proposed novel hybrid mechanism 
can be an effective against DoS attacks, causing benign traffic to keep flowing, keeping the network working. 
The framework also proposes a novel flow based algorithm which can determine the attacker in crucial 
attack. 

Keywords: Software defined network; Denial of Service, Security, Support Vector Machine, Reinforcement Learning, 
Markovian Model. 

Abbreviations: SDN, Software Defined Network; DoS, Denial of Service; SVM, Support Vector Machine; MDP, 
Markovian Decision Process. 

I. INTRODUCTION 

Software Defined Networking (SDN) is a favorable 
solution for tending to difficulties of future networks [1]. 
SDN in contrast to traditional networks is a network 
technology where the control plane logic is decoupled 
from the forwarding plane and has the ability to control, 
change and manage network behavior dynamically 
through software via open Application Program interface 
(API) [3]. This causes the control plane to supervise and 
control network performance  by means of programming 
control. In spite of SDN’s favorable characteristics, for 
example, adaptability, transparency and reasonable 
cost, it has a few disadvantages that are to a great 
extent incited by the centralized control view. Security is 
one of the most important threat identified with 
centralization. Therefore, Denial of Service (DoS) 
attacks suggest critical security issue in SDN [2]. 
In traditional networks, both the planes are combined on 
the same devices, allowing each device to make its own 
forwarding decisions based on some distributed routing 
protocols [11]. On the contrary, SDN allows for the 
control-plane to have a global and centralized view of 
the network. Some of the Research Gaps identified 
were, the earlier detection methods proposed could 
either detect or mitigate the Dos Attacks, so there is no 
framework  which both detects and mitigates the attack. 

Secondly, prior mitigation techniques proposed included 
human intervention either through supervised learning 
or using training data. Hence the research intends to 
provide a solution to mitigate the above-mentioned 
situations with an intelligent, self- learning Framework.  
Reinforcement Learning (RL) is thus implemented as a 
novel computational approach for understanding and 
automating goal-directed learning and decision-making.  
Apart from this a novel flow-based algorithm is proposed 
which reduces our search of attacker machine to a 
limited number of hosts associated with the switch 
identified, reducing the time for mitigation. 
In this paper, to detect DoS Attacks within SDN, we 
propose a hybrid method of Entropy, a machine learning 
algorithm e.g. Support Vector Machine (SVM) for 
classifying network traffic as normal or anomalous and 
Snort IDS for deep packet inspection is used. Mitigation 
of a DoS attack is proposed using novel, intelligent deep 
Reinforcement learning based approach which works on 
Markovian Process mathematical model and a novel 
algorithm is proposed to find the attacker in the 
mitigation phase. 
The remaining paper is classified as follows. Section II 
discusses the proposed methodology of attack detection 
using Support Vector Machine (SVM) and mitigation 
using Reinforcement Learning. A novel algorithm is 
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proposed in mitigation module that points to the attacker 
with flow concept. Section III discusses the results and 
Section IV gives the conclusion. 

II.  PROPOSED METHODOLOGY 

A. Detection of Dos Attack in SDN with  Entropy and 
Support Vector Method (SVM) 
The technique used to detect DoS, described in this 
section is Support Vector Machine (SVM), which is a 
supervised machine learning technique. It includes 
segregating and focusing points in p-dimensional space, 
with a hyperplane that is a level relative subspace of p 1 
dimension [17]. For example, in two dimension, a 
hyperplane is a level one-dimensional subspace - as it 
were, a line. In the proposed method, SVM is used to 
classify, based on several feature vectors [18], whether 
a given scenario of flow packets during an experimental 
time slot is a DOS attack or not. In Entropy, we find the 
entropy values of the features of source, destination IP’s 
and port’s and then using these features we prepare a 
training data set which can be used to train the SVM 
[16]. The SVM will further classify whether the traffic is 
normal or attack traffic. Hence we say its an hybrid 
methodology using entropy, SVM and reinforcement 
learning. Once we are sure about the attack, we 
proceed further with Reinforcement learning techniques 
to mitigate the attack [15]. 
In the SVM literary work it is entirely expected to utilize 
+1 and -1 to signify the two classes. For a hyperplane 
characterized by weight w and inclination b, a direct 
discriminant is given by 

wTx+b=g>0          class+1
 

<0class−1                                                              (1) 
The numerical interpretation of a hyperplane is very 
straightforward. In two dimension, a hyperplane is 
characterized by the condition, 

β0 + β1X1+β2X2=0                                      (2) 
for parameters β0, β1 and β2. 
We state that, the above condition, characterizes the 
hyperplane. That is, any X = (X1, X2)

T 
for which the 

above condition holds is a point on the hyperplane. It 
can be handily applied  to the p-dimensional setting: 

β0+β1X1+β2X2+...+βpXp=0                          (3) 
This condition characterizes a p-dimensional hyperplane. 
Again as in if a point X = (X1, X2, ..., Xp)

T
in p-dimensional 

space (for example a vector of length p) fulfills the above 
condition, at that point X lies on the hyperplane [3].  
 
Presently, assume that X doesn't fulfill the given 
condition; rather, 

β0+β1X1+β2X2+...+βpXp>0                           (4) 
At this point this reveals to us that X lies one side of 
the hyperplane. Then again, if  
              β0+β1X1+β2X2+...+βpXp<0                           (5) 
at that point X lies on the opposite side of the 
hyperplane. So we can think about the hyperplane as 
partitioning p-dimensional space into equal parts. One 
can without much of a stretch decide on which side of 
the hyperplane a point lies by essentially ascertaining 
the sign indication of the left hand side of (2)  
On the off chance that f(xj) is positive, at that point we 
allot the test perception to class 1. If f(xj) is negative, 
then we assign the test observation to class-1 [20].  

The graph below shows the detection of the attack with 
all the points below the the hyperplane indicate an 
attack. 3 features are considered i.e the src ip, 
destination port and number of bytes [13]. The normal 
traffic and attack traffic is depicted in the Fig. 1 below. 
Similarly the Fig. 2 and 3 give the snapshots of 
features mapped with packets per second(pps) and 
bytes per second(bps) respectively. 

 

Fig. 1. Snapshot of SVM output. 

 

Fig. 2. Snapshot of feature Output packets per second. 

 

Fig. 3. Snapshot of feature Output Bytes per second. 

The experimentation could easily proof the detection of 
the DoS attack. Training of data was done with 
machine learning. All the data values above 
(hyperplane)  1 value was taken as no attack and all 
the values below the (0) was taken as attack. Receiver 
Operating Characteristic (ROC) curve is a useful tool 
when foreseeing the likelihood of a binary result. It is a 
plot of the false positive rate (x-axis) versus the true 
positive rate (y-axis) for various distinctive threshold 
values [9] somewhere in the range of 0.0 and 1.0, 
predicting the probability of a binary outcome. Fig. 4 
depicts the RoC Graph of Training Data. As from the 
graph it is clear that SVM has the  largest area under 
the curve (AUC). This indicates that SVM is a better 
accuracy model at predicting the positive class when 
the actual outcome is positive. 
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Fig. 4. RoC Graph of Training Data. 
 
B. Mitigation of DoS attack with Intelligent Method of 
Reinforcement Learning 
Reinforcement Learning (RL) refers to a category of 
Machine Learning method in which the agent receives a 
reward later, in the next time step while assessing its 
previous action. Basic reinforcement is modelled 
as Markov Decision Process [5]. Typically, a RL setup is 
consists of two main factors, an agent and an 
environment as shown in Fig. 5. 

 

Fig. 5. Components of  Reinforcement Learning. 

In RL, suitable action is taken to maximize reward in a 
particular situation. Without training dataset, it will gain 
from its experience. Apart from the two main elements 
i.e. an agent and the environment, RL consists of four 
main subelements: a policy, a reward function, a value 
function, and a model of the environment [16]. 
The agent and environment communicate with each 
other sequentially indiscrete time steps, t = 0; 1; 2; 3 [6]. 
At each time step t, the agent receives some depiction 
of the environment's state, St ∈S, where S is the set of 
possible states, and selects a corresponding action on 
that basis. At∈ A(St), where A(St) K is the set of actions 
accessible in state St. One step later, partially as an 

outcome of its action, the agent gets a numerical 
reward, Rt+1 ∈R, and ends up in another state, St+1.At 
each time step, the agent executes a mapping from 
states to probabilities choosing each possible action. 
This mapping is known as the agents policy and is 
expressed as πt, where πt(s,a) is the likelihood that At= 
a if St= s. RL techniques determine how the agent 
changes its strategy because of its experience. The 
agent’s goal, is to maximize the total amount of reward it 
receives over the long period of time [7]. 

C. Proposed Novel Algorithm to detect the attacker 
A novel algorithm is proposed in mitigation module to 
reduce our search of attacker machine to a limited 
number of hosts associated with the switch identified. It 
makes use of flow based technique [4]. Assuming that 
with attack packets, the packet flow will increase, hence 
the idea is to compute the flow for every switch. The 
advantage of the algorithm is it reduces the number of 
searches in case of a large network topology. The 
algorithm is divided into 3 phases: 
Initialization: Consider a network of n switches. We 
initialize a vector of n elements with each element 
associated with the respective witch. At the beginning of 
the experiment, we collect flow in each switch, say,  {f1, 
f2, ..., fn}, find the total flow,  F=∑  ���

��	 ,and store the 
normalized value of flow nfi= fi/F for all i∈ [1, n].  We do 
this in every epoch.  Thus, for every epoch j, we have a 
vector of normalized flow Vj= nf1, nf2, ..., nfn. This vector 
Vj is the input to our attacker isolation algorithm. 
Iteration: The normalized flow vector Vj for an epoch j is 
searched for the element having maximum value. This 
element happens to be the one associated with a switch 
recording maximum flow in that epoch. Having identified 
this switch, a signal is sent to the controller to 
disable/deactivate this switch [8]. The flow in the 
remaining switch is checked for few epochs, especially 
the switch(es) associated with the target machines. This 
is repeated until the stopping condition is met. 
Termination: Each switch under normal traffic flow have 
some flow value. This is adjusted as per the 
experimental setup and may be different for different 
switches in the network. Let this minimum flow value or 
the target machines be fmin. threshold value for the 
switch st  associated with the 
During the iteration steps, when a switch skis 
deactivated, we check the flow in st. If the flow in s t 

drops below fmin we stop the algorithm and mark sk as 
the switch having higher probability of having attacker 
machine associated with it. The proposed algorithm is 
as stated below: 

Algorithm 
• Input: The normalized flow vector Vj for an epoch j 

• Output: The switch sk, as the switch having higher probability of having attacker machine associated with it. 

1. Initialize the normalized flow vector Vj for an epoch j 
2. Find the element with maximum value in the vector Vj, say nfk. 
3. Send a signal to the controller to deactivate the corresponding switch, sk 
4. Check the flow in switch st  associated with target machines 
5. If flow in stis less than fmin then goto step9. 
6. Activate switch sk 
7. Increment j by fewepochs 
8. Goto step 2 
9. Output the switch skas the one having higher probability of being associated with attacker machine Stop. 
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III. RESULT AND DISCUSSION 

A. Experimental Test bed Topology 
The Network Setup of Fig. 6 is used in our 
experiments which consists 17 hosts, 6 switches and 1 
controller. 

 

Fig. 6. One of the experimental network setup. 

The architecture is as follows: Hosts under switches 
s1, s2 and s3, the target hosts, are the ones to be 
protected. Hosts under switch s5 will be used for 
support in the form of sentinels, honeypots, compute-
intensive processing, etc. Controller c0 acts as a 
forwarding switch and is connected to all switches. A 
Client-Server Model is used so as to have 
communication between the agent and the hosts and 
pass messages of attack traffic. It is also used to send 
activation/deactivation messages to sentinels, observe 
patterns of attack if a traffic is redirected to one of the 
honeypots, provide support functions for compute 
intensive processing [10].  

B. Fuzzy Controller subsystem implementation 
To generate the states of our reinforcement learning 
agent, we propose a fuzzy controller system, that takes 
in as input various variables of the environment and 
based on the rules fed into it, generates the state of the 
agent. For example, if the input variables considered are 
the priority levels of the service, and number of packets 
received by a host [14]. The parameter service is a 
number given to the different networking services 
available in our system on hosts that are to be provided 
security. With lower values given to services with low 
priority. The second parameter could be, say, number of 
packets received by a host, is identified by the module 
that is keeping track of the traffic flow and extracting 
relevant information, cleaning it up and presenting in a 
format to be used by our controller, is classified into 
three categories, based on the volume of the incoming 
traffic seen by a host. Armed with these two parameters, 
our controller will churn out the state of our agent based 
on the rules fed into it. The Table 1 presents the set of 
rules fed to the fuzzy controller based on two 
parameters, service priority and No. of packets. 

Table 1: Set of Rules fed to the fuzzy controller. 

Service Priority Feature (No. of 
packets) 

State of Agent 

Low Low Low Risk 

Low Medium Low Risk 

Low High Medium Risk 

Medium Low Low Risk 

Medium Medium Medium Risk 

Medium High Medium Risk 

High Low Low Risk 

High Medium Medium Risk 

High High High Risk 

The security levels for hosts under switches s1, s2 and s3 
are defined at various levels depending on the application 
priority. What it means is that, network services running on 
hosts under switch s1 is of low risk and low priority and 
thus the action to be performed in the event of an attack is 
of minimalist in nature as compared to the hosts under 
switches s2 and s3. This level will act as one of the 
parameter to decide the state of our reinforcement 
learning agent.  

 

Fig. 7. State of the agent as identified by fuzzy 
controller. 

Based on the number of packets received on a host for 
a particular service and the level of that service, our 
controller will give out the state our agent should be in, 
for that particular episode. This is by far, a very novel 
and a very efficient way of reading the environment as 
shown in Fig. 7. 

C. Results of Experimental Emulation with 3 Flooding 
Attacks 
As mentioned earlier, our research will be highlighting 
on various DoS flooding attack, mainly TCP-Syn, 
ICMP and UDP flood attacks were studied. An 
experimental test bed with mininet emulator was 
created [20], as shown in Fig. 6 with hosts connected 
to switch s1, s2, s3 e.g host h1, which is the victim 
node and host connected to switch s4 e.g host, h10 is 
the attacker node. First we consider a normal traffic 
flow as shown in Fig. 8 and its corresponding graph of 
normal traffic at each switch port in Fig. 9 as analysed 
by wires hark. 

 

Fig. 8. A snapshot of  Normal traffic flow. 
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Fig. 9. A snapshot of  Normal traffic flow graph 
outputs. 

During normal traffic flow, as seen in the 
experimentation snapshot of Fig. 9 , there is no much 
spiked increase in traffic, however in case of the TCP-
Syn attack  there will be increased spike in traffic as 
shown in the below given Fig. 10. 

 

Fig. 10. A snapshot of  TCP Syn flood Attack. 

Once the state of the Agent is known to change, the 
corresponding mitigation action is taken the actions 
defined are for no attack or normal traffic, action 
performed is accept the packet, for a low attack, we 
redirect the traffic, for medium attack, we block the 
packets i.e reject the packet and send an error message 
(ICMP) and for high severity attack we drop the packets 
and no reply given, so attacker is unaware of drop. The 
agent will get a reward or a punishment for every correct 
or wrong action taken respectively. This is known as a 
positive or negative reward. The agent does self-
learning from the environment. The main aim is to find a 
policy 
maximise the rewards so that agent trains itself 
to take the correct mitigation action. Fig.11 gives the 
experimental results of action performed and the reward 
given to the agent [19].  

 

Fig. 11. Snapshot of Mitigation Output Taken and 
the rewards gained. 

 

Fig. 12.  Snapshot of Benign Traffic flowing inspite 
of the attack. 

An experimentation with mininet emulator [21] proofs 
the success of mitigation technique by giving higher 
percentage of benign traffic inspite of the attack traffic. 
Implementation method proposed as shown in Fig. 12 
indicates that the attack is been successfully mitigated  
since, inspite of the flood attacks like TCP Syn [12], 
UDP and ICMP traffic, benign traffic keeps flowing, 
keeping the network working, which was the main 
motive of the research. 

IV. CONCLUSION 

In this paper, we  have presented a current review on 
research on SDN security. We have detected the DoS 
attack in SDN using Support Vector Machine (SVM). 
We have also proposed an intelligent method of 
Reinforcement Learning which supports a Morkovian 
Mathematical Model for mitigation of DoS attacks in 
SDN.  
The Model is trained with Fuzzy Logic. An experimental 
test bed is designed with systems and 3 types of 
flooding attacks i.e.  TCP-Syn, ICMP and UDP flood 
attacks. The results also show that with mitigation, the 
rate of benign traffic has increased indicating a high 
level of accuracy with respect to benign traffic, allowing 
the network to work uninterrupted, inspite of the attack 
traffic. This indicates the successful implementation of 
the proposed methodology framework. 

V. FUTURE SCOPE 

The framework created is tested for the flood category 
of DoS attack e.g UDP, ICMP etc. however other DoS 
attacks for e.g. Man -In -Middle attack could also be 
tested with this framework. The mitigation technique is 
implemented with MiniNet which is a Network emulator 
which can be later tested real time on SDN Switches. 

Conflict of Interest. Nil. 
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