
Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 627

International Journal on Emerging Technologies 11(2): 627-632(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

A Novel Hybrid Mitigation Technique against DoS Attacks in Software defined
Network with Entropy, SVM and Reinforcement Learning

Trupti Lotlikar
1
 and Deven Shah

2

1
Assistant Professor, Department of Information Technology,

Terna Engineering College/Fr.CRIT Navi Mumbai (Maharashtra), India.
2
Associate Professor, Department of Information Technology,

Thakur College of Engineering Kandivli, Mumbai (Maharashtra), India.

(Corresponding author Trupti Lotlikar)
(Received 23 December 2019, Revised 25 February 2020, Accepted 27 February 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Software Defined Network (SDN), also known as a Smart Network, as it performs significant role
in regulating and managing number of heterogeneous networks. Tragically, SDN faces a great deal of
security issues that may seriously influence the system activities if not appropriately tended to. In the SDN
network, there is centralization of the controller and hence any DoS attack will cause the entire system to
collapse. The DoS attack on centralized model brings about huge challenge of communication overhead,
packet delay and loss of genuine packets. Another challenge is there is a lack of research on finding a
common methodology for intelligently evaluating the security of SDN controllers. Thus, the paper
contributes by evaluating an intelligent hybrid method for detection and mitigation of DoS attack with
Entropy, SVM and Reinforcement Learning with Markovian Process model. The paper proposes a profound
reinforcement learning based system, which can intelligently gain proficiency in learning the optimal
mitigation policies under various attack scenarios and mitigate the DoS flooding attack in real time. Practical
experiments are conducted in the Mininet environment, to defend against a wide range of DoS flooding
attacks such as TCP SYN, UDP, and ICMP flooding and proves that the proposed novel hybrid mechanism
can be an effective against DoS attacks, causing benign traffic to keep flowing, keeping the network working.
The framework also proposes a novel flow based algorithm which can determine the attacker in crucial
attack.

Keywords: Software defined network; Denial of Service, Security, Support Vector Machine, Reinforcement Learning,
Markovian Model.

Abbreviations: SDN, Software Defined Network; DoS, Denial of Service; SVM, Support Vector Machine; MDP,
Markovian Decision Process.

I. INTRODUCTION

Software Defined Networking (SDN) is a favorable
solution for tending to difficulties of future networks [1].
SDN in contrast to traditional networks is a network
technology where the control plane logic is decoupled
from the forwarding plane and has the ability to control,
change and manage network behavior dynamically
through software via open Application Program interface
(API) [3]. This causes the control plane to supervise and
control network performance by means of programming
control. In spite of SDN’s favorable characteristics, for
example, adaptability, transparency and reasonable
cost, it has a few disadvantages that are to a great
extent incited by the centralized control view. Security is
one of the most important threat identified with
centralization. Therefore, Denial of Service (DoS)
attacks suggest critical security issue in SDN [2].
In traditional networks, both the planes are combined on
the same devices, allowing each device to make its own
forwarding decisions based on some distributed routing
protocols [11]. On the contrary, SDN allows for the
control-plane to have a global and centralized view of
the network. Some of the Research Gaps identified
were, the earlier detection methods proposed could
either detect or mitigate the Dos Attacks, so there is no
framework which both detects and mitigates the attack.

Secondly, prior mitigation techniques proposed included
human intervention either through supervised learning
or using training data. Hence the research intends to
provide a solution to mitigate the above-mentioned
situations with an intelligent, self- learning Framework.
Reinforcement Learning (RL) is thus implemented as a
novel computational approach for understanding and
automating goal-directed learning and decision-making.
Apart from this a novel flow-based algorithm is proposed
which reduces our search of attacker machine to a
limited number of hosts associated with the switch
identified, reducing the time for mitigation.
In this paper, to detect DoS Attacks within SDN, we
propose a hybrid method of Entropy, a machine learning
algorithm e.g. Support Vector Machine (SVM) for
classifying network traffic as normal or anomalous and
Snort IDS for deep packet inspection is used. Mitigation
of a DoS attack is proposed using novel, intelligent deep
Reinforcement learning based approach which works on
Markovian Process mathematical model and a novel
algorithm is proposed to find the attacker in the
mitigation phase.
The remaining paper is classified as follows. Section II
discusses the proposed methodology of attack detection
using Support Vector Machine (SVM) and mitigation
using Reinforcement Learning. A novel algorithm is

e
t

Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 628

−

−

proposed in mitigation module that points to the attacker
with flow concept. Section III discusses the results and
Section IV gives the conclusion.

II. PROPOSED METHODOLOGY

A. Detection of Dos Attack in SDN with Entropy and
Support Vector Method (SVM)
The technique used to detect DoS, described in this
section is Support Vector Machine (SVM), which is a
supervised machine learning technique. It includes
segregating and focusing points in p-dimensional space,
with a hyperplane that is a level relative subspace of p 1
dimension [17]. For example, in two dimension, a
hyperplane is a level one-dimensional subspace - as it
were, a line. In the proposed method, SVM is used to
classify, based on several feature vectors [18], whether
a given scenario of flow packets during an experimental
time slot is a DOS attack or not. In Entropy, we find the
entropy values of the features of source, destination IP’s
and port’s and then using these features we prepare a
training data set which can be used to train the SVM
[16]. The SVM will further classify whether the traffic is
normal or attack traffic. Hence we say its an hybrid
methodology using entropy, SVM and reinforcement
learning. Once we are sure about the attack, we
proceed further with Reinforcement learning techniques
to mitigate the attack [15].
In the SVM literary work it is entirely expected to utilize
+1 and -1 to signify the two classes. For a hyperplane
characterized by weight w and inclination b, a direct
discriminant is given by

wTx+b=g>0 class+1

<0class−1 (1)
The numerical interpretation of a hyperplane is very
straightforward. In two dimension, a hyperplane is
characterized by the condition,

β0 + β1X1+β2X2=0 (2)
for parameters β0, β1 and β2.
We state that, the above condition, characterizes the
hyperplane. That is, any X = (X1, X2)

T
for which the

above condition holds is a point on the hyperplane. It
can be handily applied to the p-dimensional setting:

β0+β1X1+β2X2+...+βpXp=0 (3)
This condition characterizes a p-dimensional hyperplane.
Again as in if a point X = (X1, X2, ..., Xp)

T
in p-dimensional

space (for example a vector of length p) fulfills the above
condition, at that point X lies on the hyperplane [3].

Presently, assume that X doesn't fulfill the given
condition; rather,

β0+β1X1+β2X2+...+βpXp>0 (4)
At this point this reveals to us that X lies one side of
the hyperplane. Then again, if
 β0+β1X1+β2X2+...+βpXp<0 (5)
at that point X lies on the opposite side of the
hyperplane. So we can think about the hyperplane as
partitioning p-dimensional space into equal parts. One
can without much of a stretch decide on which side of
the hyperplane a point lies by essentially ascertaining
the sign indication of the left hand side of (2)
On the off chance that f(xj) is positive, at that point we
allot the test perception to class 1. If f(xj) is negative,
then we assign the test observation to class-1 [20].

The graph below shows the detection of the attack with
all the points below the the hyperplane indicate an
attack. 3 features are considered i.e the src ip,
destination port and number of bytes [13]. The normal
traffic and attack traffic is depicted in the Fig. 1 below.
Similarly the Fig. 2 and 3 give the snapshots of
features mapped with packets per second(pps) and
bytes per second(bps) respectively.

Fig. 1. Snapshot of SVM output.

Fig. 2. Snapshot of feature Output packets per second.

Fig. 3. Snapshot of feature Output Bytes per second.

The experimentation could easily proof the detection of
the DoS attack. Training of data was done with
machine learning. All the data values above
(hyperplane) 1 value was taken as no attack and all
the values below the (0) was taken as attack. Receiver
Operating Characteristic (ROC) curve is a useful tool
when foreseeing the likelihood of a binary result. It is a
plot of the false positive rate (x-axis) versus the true
positive rate (y-axis) for various distinctive threshold
values [9] somewhere in the range of 0.0 and 1.0,
predicting the probability of a binary outcome. Fig. 4
depicts the RoC Graph of Training Data. As from the
graph it is clear that SVM has the largest area under
the curve (AUC). This indicates that SVM is a better
accuracy model at predicting the positive class when
the actual outcome is positive.

Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 629

{ }

Fig. 4. RoC Graph of Training Data.

B. Mitigation of DoS attack with Intelligent Method of
Reinforcement Learning
Reinforcement Learning (RL) refers to a category of
Machine Learning method in which the agent receives a
reward later, in the next time step while assessing its
previous action. Basic reinforcement is modelled
as Markov Decision Process [5]. Typically, a RL setup is
consists of two main factors, an agent and an
environment as shown in Fig. 5.

Fig. 5. Components of Reinforcement Learning.

In RL, suitable action is taken to maximize reward in a
particular situation. Without training dataset, it will gain
from its experience. Apart from the two main elements
i.e. an agent and the environment, RL consists of four
main subelements: a policy, a reward function, a value
function, and a model of the environment [16].
The agent and environment communicate with each
other sequentially indiscrete time steps, t = 0; 1; 2; 3 [6].
At each time step t, the agent receives some depiction
of the environment's state, St ∈S, where S is the set of
possible states, and selects a corresponding action on
that basis. At∈ A(St), where A(St) K is the set of actions
accessible in state St. One step later, partially as an

outcome of its action, the agent gets a numerical
reward, Rt+1 ∈R, and ends up in another state, St+1.At
each time step, the agent executes a mapping from
states to probabilities choosing each possible action.
This mapping is known as the agents policy and is
expressed as πt, where πt(s,a) is the likelihood that At=
a if St= s. RL techniques determine how the agent
changes its strategy because of its experience. The
agent’s goal, is to maximize the total amount of reward it
receives over the long period of time [7].

C. Proposed Novel Algorithm to detect the attacker
A novel algorithm is proposed in mitigation module to
reduce our search of attacker machine to a limited
number of hosts associated with the switch identified. It
makes use of flow based technique [4]. Assuming that
with attack packets, the packet flow will increase, hence
the idea is to compute the flow for every switch. The
advantage of the algorithm is it reduces the number of
searches in case of a large network topology. The
algorithm is divided into 3 phases:
Initialization: Consider a network of n switches. We
initialize a vector of n elements with each element
associated with the respective witch. At the beginning of
the experiment, we collect flow in each switch, say, {f1,
f2, ..., fn}, find the total flow, F=∑ ���

��	 ,and store the
normalized value of flow nfi= fi/F for all i∈ [1, n]. We do
this in every epoch. Thus, for every epoch j, we have a
vector of normalized flow Vj= nf1, nf2, ..., nfn. This vector
Vj is the input to our attacker isolation algorithm.
Iteration: The normalized flow vector Vj for an epoch j is
searched for the element having maximum value. This
element happens to be the one associated with a switch
recording maximum flow in that epoch. Having identified
this switch, a signal is sent to the controller to
disable/deactivate this switch [8]. The flow in the
remaining switch is checked for few epochs, especially
the switch(es) associated with the target machines. This
is repeated until the stopping condition is met.
Termination: Each switch under normal traffic flow have
some flow value. This is adjusted as per the
experimental setup and may be different for different
switches in the network. Let this minimum flow value or
the target machines be fmin. threshold value for the
switch st associated with the
During the iteration steps, when a switch skis
deactivated, we check the flow in st. If the flow in s t

drops below fmin we stop the algorithm and mark sk as
the switch having higher probability of having attacker
machine associated with it. The proposed algorithm is
as stated below:

Algorithm
• Input: The normalized flow vector Vj for an epoch j

• Output: The switch sk, as the switch having higher probability of having attacker machine associated with it.

1. Initialize the normalized flow vector Vj for an epoch j
2. Find the element with maximum value in the vector Vj, say nfk.
3. Send a signal to the controller to deactivate the corresponding switch, sk
4. Check the flow in switch st associated with target machines
5. If flow in stis less than fmin then goto step9.
6. Activate switch sk
7. Increment j by fewepochs
8. Goto step 2
9. Output the switch skas the one having higher probability of being associated with attacker machine Stop.

Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 630

III. RESULT AND DISCUSSION

A. Experimental Test bed Topology
The Network Setup of Fig. 6 is used in our
experiments which consists 17 hosts, 6 switches and 1
controller.

Fig. 6. One of the experimental network setup.

The architecture is as follows: Hosts under switches
s1, s2 and s3, the target hosts, are the ones to be
protected. Hosts under switch s5 will be used for
support in the form of sentinels, honeypots, compute-
intensive processing, etc. Controller c0 acts as a
forwarding switch and is connected to all switches. A
Client-Server Model is used so as to have
communication between the agent and the hosts and
pass messages of attack traffic. It is also used to send
activation/deactivation messages to sentinels, observe
patterns of attack if a traffic is redirected to one of the
honeypots, provide support functions for compute
intensive processing [10].

B. Fuzzy Controller subsystem implementation
To generate the states of our reinforcement learning
agent, we propose a fuzzy controller system, that takes
in as input various variables of the environment and
based on the rules fed into it, generates the state of the
agent. For example, if the input variables considered are
the priority levels of the service, and number of packets
received by a host [14]. The parameter service is a
number given to the different networking services
available in our system on hosts that are to be provided
security. With lower values given to services with low
priority. The second parameter could be, say, number of
packets received by a host, is identified by the module
that is keeping track of the traffic flow and extracting
relevant information, cleaning it up and presenting in a
format to be used by our controller, is classified into
three categories, based on the volume of the incoming
traffic seen by a host. Armed with these two parameters,
our controller will churn out the state of our agent based
on the rules fed into it. The Table 1 presents the set of
rules fed to the fuzzy controller based on two
parameters, service priority and No. of packets.

Table 1: Set of Rules fed to the fuzzy controller.

Service Priority Feature (No. of
packets)

State of Agent

Low Low Low Risk

Low Medium Low Risk

Low High Medium Risk

Medium Low Low Risk

Medium Medium Medium Risk

Medium High Medium Risk

High Low Low Risk

High Medium Medium Risk

High High High Risk

The security levels for hosts under switches s1, s2 and s3
are defined at various levels depending on the application
priority. What it means is that, network services running on
hosts under switch s1 is of low risk and low priority and
thus the action to be performed in the event of an attack is
of minimalist in nature as compared to the hosts under
switches s2 and s3. This level will act as one of the
parameter to decide the state of our reinforcement
learning agent.

Fig. 7. State of the agent as identified by fuzzy
controller.

Based on the number of packets received on a host for
a particular service and the level of that service, our
controller will give out the state our agent should be in,
for that particular episode. This is by far, a very novel
and a very efficient way of reading the environment as
shown in Fig. 7.

C. Results of Experimental Emulation with 3 Flooding
Attacks
As mentioned earlier, our research will be highlighting
on various DoS flooding attack, mainly TCP-Syn,
ICMP and UDP flood attacks were studied. An
experimental test bed with mininet emulator was
created [20], as shown in Fig. 6 with hosts connected
to switch s1, s2, s3 e.g host h1, which is the victim
node and host connected to switch s4 e.g host, h10 is
the attacker node. First we consider a normal traffic
flow as shown in Fig. 8 and its corresponding graph of
normal traffic at each switch port in Fig. 9 as analysed
by wires hark.

Fig. 8. A snapshot of Normal traffic flow.

Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 631

Fig. 9. A snapshot of Normal traffic flow graph
outputs.

During normal traffic flow, as seen in the
experimentation snapshot of Fig. 9 , there is no much
spiked increase in traffic, however in case of the TCP-
Syn attack there will be increased spike in traffic as
shown in the below given Fig. 10.

Fig. 10. A snapshot of TCP Syn flood Attack.

Once the state of the Agent is known to change, the
corresponding mitigation action is taken the actions
defined are for no attack or normal traffic, action
performed is accept the packet, for a low attack, we
redirect the traffic, for medium attack, we block the
packets i.e reject the packet and send an error message
(ICMP) and for high severity attack we drop the packets
and no reply given, so attacker is unaware of drop. The
agent will get a reward or a punishment for every correct
or wrong action taken respectively. This is known as a
positive or negative reward. The agent does self-
learning from the environment. The main aim is to find a
policy
maximise the rewards so that agent trains itself
to take the correct mitigation action. Fig.11 gives the
experimental results of action performed and the reward
given to the agent [19].

Fig. 11. Snapshot of Mitigation Output Taken and
the rewards gained.

Fig. 12. Snapshot of Benign Traffic flowing inspite
of the attack.

An experimentation with mininet emulator [21] proofs
the success of mitigation technique by giving higher
percentage of benign traffic inspite of the attack traffic.
Implementation method proposed as shown in Fig. 12
indicates that the attack is been successfully mitigated
since, inspite of the flood attacks like TCP Syn [12],
UDP and ICMP traffic, benign traffic keeps flowing,
keeping the network working, which was the main
motive of the research.

IV. CONCLUSION

In this paper, we have presented a current review on
research on SDN security. We have detected the DoS
attack in SDN using Support Vector Machine (SVM).
We have also proposed an intelligent method of
Reinforcement Learning which supports a Morkovian
Mathematical Model for mitigation of DoS attacks in
SDN.
The Model is trained with Fuzzy Logic. An experimental
test bed is designed with systems and 3 types of
flooding attacks i.e. TCP-Syn, ICMP and UDP flood
attacks. The results also show that with mitigation, the
rate of benign traffic has increased indicating a high
level of accuracy with respect to benign traffic, allowing
the network to work uninterrupted, inspite of the attack
traffic. This indicates the successful implementation of
the proposed methodology framework.

V. FUTURE SCOPE

The framework created is tested for the flood category
of DoS attack e.g UDP, ICMP etc. however other DoS
attacks for e.g. Man -In -Middle attack could also be
tested with this framework. The mitigation technique is
implemented with MiniNet which is a Network emulator
which can be later tested real time on SDN Switches.

Conflict of Interest. Nil.

REFERENCES

[1]. Kalkan, K., Gür, G., & Alagöz, F. (2017). SDNScore:
A statistical defense mechanism against DDoS attacks
in SDN environment. In 2017 IEEE Symposium on
Computers and Communications (ISCC), 12(1), 669-
675.
[2]. Scott-Hayward, S., Natarajan, S., & Sezer, S.
(2015). A survey of security in software defined
networks. IEEE Communications Surveys &
Tutorials, 18(1), 623-654.

Lotlikar & Shah International Journal on Emerging Technologies 11(2): 627-632(2020) 632

[3]. Zargar, S., Joshi, J., & Tipper, D. (2013). A Survey
of Defense Mechanisms Against Distributed Denial of
Service (DDoS) Flooding Attacks. IEEE communication
survey and tutorials, 15(4), 2046–2069.
[4]. Shin, S., Yegneswaran, V., Porras, P., & Gu, G.
(2013). Avant-guard: Scalable and vigilant switch flow
management in software-defined networks.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. pp. 413-424.
[5]. Wang, H., Xu, L., & Gu, G. (2015). Floodguard: A
dos attack prevention extension in software-defined
networks. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
15(1), 239–250
[6]. Van Trung, P., Huong, T. T., Van Tuyen, D., Duc, D.
M., Thanh, N. H., & Marshall, A. (2015, October). A
multi-criteria-based DDoS-attack prevention solution
using software defined networking. In 2015 International
Conference on Advanced Technologies for
Communications (ATC) (pp. 308-313). IEEE.
[7]. Sezer, S., Scott-Hayward, S., Chouhan, P. K.,
Fraser, B., Lake, D., Finnegan, J., & Rao, N. (2013). Are
we ready for SDN? Implementation challenges for
software-defined networks. IEEE Communications
Magazine, 51(7), 36-43.
[8]. Dhawan, M., Poddar, R., Mahajan, K., & Mann, V.
(2015). SPHINX: Detecting Security Attacks in
Software-Defined Networks. In Ndss, 15, 8-11.
[9]. Wang, H., Xu, L., & Gu, G. (2014). OF-GUARD: A
DoS attack prevention extension in software-defined
networks. The Open Network Summit (ONS), (2014).
[10]. Charu, P. P., & John, M. (2016). A Framework for
Design and Simulation of DoS attacks on SDN
Network. international journal of innovative research in
computer and communication engineering, 4(2), 345-
356.
[11]. Wang, H., Xu, L., & Gu, G. (2015). Floodguard: A
dos attack prevention extension in software-defined
networks. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and
Networks, 13(2), 239–250.
[12]. Mohammadi, R., Javidan, R., & Conti, M. (2017).
Slicots: An sdn-based lightweight countermeasure for

tcp syn flooding attacks. IEEE Transactions on Network
and Service Management, 14(2), 487-497.
[13]. Bhandari, A., Sangal, A. L., & Kumar, K. (2015).
Destination address entropy based detection and
traceback approach against distributed denial of service
attacks. International Journal of Computer Network and
Information Security, 7(8), 9-20.
[14]. Wang, R., Jia, Z., & Ju, L. (2015). An entropy-
based distributed DDoS detection mechanism in
software-defined networking. In 2015 IEEE
Trustcom/BigDataSE/ISPA, 15(1): 310–317.
[15]. Liu, Y., Dong, M., Ota, K., Li, J., & Wu, J. (2018).
Deep reinforcement learning based smart mitigation of
DDoS flooding in software-defined networks. In 2018
IEEE 23rd International Workshop on Computer Aided
Modeling and Design of Communication Links and
Networks (CAMAD) (pp. 1-6). IEEE.
[16]. Sharma, S., Sahu, S. K., & Jena, S. K. (2015). On
selection of attributes for entropy based detection of
DDoS. In 2015 International Conference on Advances in
Computing, Communications and Informatics
(ICACCI), 1096-1100.
[17]. Feng, W., Zhang, Q., Hu, G., & Huang, J. X.
(2014). Mining network data for intrusion detection
through combining SVMs with ant colony
networks. Future Generation Computer Systems, 37(2),
127-140.
[18]. Da Silva, A. S., Machado, C. C., Bisol, R. V.,
Granville, L. Z., & Schaeffer-Filho, A. (2015,
September). Identification and selection of flow features
for accurate traffic classification in SDN. In 2015 IEEE
14th International Symposium on Network Computing
and Applications, 134-141.
[19]. Kokila, R. T., Selvi, S. T., & Govindarajan, K.
(2014). DDoS detection and analysis in SDN-based
environment using support vector machine classifier.
In 2014 Sixth International Conference on Advanced
Computing (ICoAC), 205-210.
[20]. M. Team, “Mininet - an instant virtual network on
your laptop (or other pc).” [Online]. Available:
http://mininet.org/
[21]. M. MC, “Nox.” [Online]. Available:
https://github.com/noxrepo/pox.

How to cite this article: Lotlikar, T. and Shah, D. (2020). A Novel Hybrid Mitigation Technique against DoS
Attacks in Software defined Network with Entropy, SVM and Reinforcement Learning. International Journal on
Emerging Technologies, 11(2): 627–632.

